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LSUMMARY

An analysis is presented of the load
in actual columns, taking adequately into
have an important effeet upon this load.

at which yielding first occurs
account all the factor6 which
These factors include initiel

defects and the yielding limit of materisls. Extensive tests were made
to verify the assumed relation between the magnitudes of the defects
sad the known properties of columns. The results are expressed as a
formula or chart applicable to all cases.

INTRODUCTION

Investigation of the buckling of columns began in 1744 with Eulerfs
famous theory. Although a large amount of work has been done on this
problem since that time, the amount of progress from the designer’s
standpoint seems surprisingly small. The class~cal stability studies
initiated by Ner and later extended to cover various @pes of end
conditions, variations in cross section, and so forth, consist in the
determinatim of the conditions fw neutral equilibrium, under infin-
itesimal displacement, of a perfectly homogeneous elastic column loaded
along a perfectly straight elastic exis. Classical stabili~ theories
have been found to be satisfactory for predicting the ultimate strengths
of “long,” that is, very slender, columns. However, for mediw or short
columns the defects always present in actual columns and the limitations
to the elastic behavior of actual materials, factors which are not con-
sidered in the idealized classical stabili~ theories, become of great
importance. For such columns, which include most practical applications,
designers still rely upon empirical results expressed in the form of
curves or formulas, each curve or formula being of lhited applicability.
These empirical results also determine the range of applicability of
the classical stability theories and, hence, must be made use of even
when applying these theories.
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Buckling problems present certain difficulties by their very nature,
but the case of the column is the simplest of such problems; and there .

seems to be no very good reason why a rational universal column theory
should not be developed which WOW apply equally to all columns and take -
into account all.the factors which actually have an important influence
won the results. Such a “theory” would, of course, like all theories,
include a nuuiberof empirical factors or relations which would have to
be determined frcm new or existing experimentsj even the classical sta-
bility theories depeml upon the erqxlricallydetermined stress-strain
relations of elastic m3terials. However, the amount of empirical infor-
mation required to give such a theory universal applicability would be
very small compared with what would be required by purely empirical
methods. Such a “universal theory” might be somewhat inconvenient to
use for design purposes in its complete form, but for the limited ranges
for which present empirical methods apply it would certainly reduce to
something of comparable simplicity. The theory could thus replace
present d~:ign methods in these reduced forms even if it were impractical
for direct use.

The edvamlxqgesof such a development would go far beyond the mere
replacement of one satisfactory design method by a no more satisfactory
but more “elegant” method. For example, there is now no way to compare
one set of empirical results w5th another set cavering a clifferent range.
Yet, in many fields of engineering such comparisons can be made and prove
of great value in bringing ,tolight and making suitable allowance for

R

errors and the effects of variations in testing technique and in the

interpretations which clifferent investigators put on test results, varia- .
ticms which always exist when tests are made and interpreted by different
peoPb at different times and places.

The main advantage of such a development would, huwever, be the SEUM
as appears in any field when empirical results are supplemented by adequate
general theory. Experimental results are necessarily of limited range.
Because of the nmiber of Variables involved, presently available data on
Col.umus- in spite of the great nmiber of tests which have been made -
cover only a smafi fractim of possible cases. only an adequate theory
can permit safe extrapolation, and the existence of such a theory should
reLease designers frcxndesign limitati~ of which they may not even be
awxre.

Two general criteria are in comnm use for defining the static
strength of the parts of machines and structures for &sign purposes.
One is based upon the loads at which yielding of the material first
sixrrtsj the other, upon the maximum loads which can be withstood.. The
first critericm seems logical to use as a basis for design of close
fitting machine parts which “fail” insofar as serving their purpose is
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concerned if an a~reciable permsnent change of shape occurs. The second
criterion seems the most lo~cal to use in the design of structures for
which the exact shape is of relatively little importance ccmpsred with
the ultimate strength.

Sfnce columns are importantelements in both machines smd structures
there should evidently be not one but two column theories, one for the
column had at which yielding starts (for which litile inf~tion exists
at present) and the o*r for the ultimate column strength. W ~esent
paper is intended to supply the first need, namely, a rational analysis,
supported by tests of a special type, of the load at which yielding first
occurs in actual columns of any type, taking adequately into account all
the factors which have am important effect upon this load.

Although ultimte strengths till.not be covered, it is of interest
here to consider briefly the problem of developing an ultimate-strength
theory. Up to the load at which yielding starts the action of a column
is everywhere el&stic. Between this load and the ultimate load, part of
the column is in the el.mtic state and part in the plastic state (assuming
that the material has sane ductilityj if not, the two loads coincide).
It is not too difficult to analyze satisfactorily this elastic-plastic
action for particular cases, and many such analyses have been made j but
it is much more difficult to set up a general theory covering all columns,
especially considering the widely varying behavior of different materials
in the plastic range.

However, it seems to be gen~al experience that the ultimate strength
of long columns is only a littxe below the classical stabilim value,
while the ultimate strength in the medium range is probably only a lAttle
above the load at which yielding starts. ~ly for very short colmns,
approaching something which would usually be thought of as “blocks’!rather
than columns, should the ultimate strengW cliffer very greatly from some
other known value. ll?nce,it may be possible to develop a sufficiently
inclusive ultimate-strength theory by studying in a relatively approxi-
mate nxannerthe small differences between the ul.tinwteload and other
lnmwn quantities. The difficul.~, of course, is to choose the approxi-
mations so as to preserve reasmable fideli~ over the great range of
variables required to make such a theory truly %niversal. ~’

This investigation was conducted at the Illinois E3stitute of
Technology under the sponsorship and with the financial assistance of
the National Advisory Comittee for Aeronautics.
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SURVEY OF PREWZOUS WORK
.

Before detailing the present work some discussion should be made
of previous efforts along these lines (refs. 1 to 9) . While such work
has shown promise, it has, in the authors! opinion, suffered from
certain deficiencies which have largely vitiated its usefulness. The
distinction between the had at which yielding starts and the ultimte
bad seems to have been given inadequate consideratim. Theories have
been &rived for load at which yielding starts and the results of these
theories have been compared tith ultimate load data to determine the
empirical factors defining the magnitude of expected defects. Where
direct measurements of defects have been msde, they have been confined
to geometric crookedness; and other kinds of defects, which the present
tests show to have as great an effect as crookedness, have been neglected.

The relations which have been assumed between the magnitudes of
defects and the known properties of the columns also seem both unreason-
able and founded upon inadequate @tij it has usually been assumed that
defect magnitude is a function of length only or of a cross-sectional
dimension only or that it is a sum of independent functions of these
dimensions, whereas certainly the effects of these dimensions are
actually interdependent and other important factors influence the
defects. Iittle thought has been given to putting results in convenient
general form or to studying such matters as the effects of end conditions 8
and variation in cross sections or of the less important ccaqmnents of
the defects, all of which mustbe given adequate considerationbefore the
generality of any theory can be consi&red to be established. r-

TESTS

Specimens

Because of the large smount of scatter to be expected in the quan-
tities to be measured - the defects in columns - it was necessary to
test a large number of specimens. All specimens were tested as columns,
and measure=nts were taken of their deviation from straightness, ini-
tially and under load. These slender specimens of rectangular cross
section were made of cold-rolled mild-steel bar stock, cold-rolled
2024-w (24s-~) aluminum-alloy sheet, and cold-rolled 7075-T6 (~S-T6)
aluminum-alloy sheet; all were of standard manufacture and cut and were
haudled carefully to avoid intrcxiucingany defects not already present.
Although these specimens were in the long-column range, measurements of
the second and third harmonics carried the data obtained into the medium- ,-
column range.



NACA TN 3415 5

To eliminate questions regarding the artificial introduction or
suppression of eccentricity at the ends, which may srise when hinged-end
columns are tested - for instance, eccentricities can be introduced
which add to or partially counteract initial curvatures - all columns
were tested with built-in ends, as is the case in most practical
applications. To sbplify the tests and eliminate systematic errors
due to friction in the measurement of end moments, the tests were made
with 100-percent end fixi~. Such tests, however, are subject to
systematic errors due to deformations in the specime?isor clamps at the
point of Clemping. To eliminate these errors the specimens were held
in loading heads at some distance outside the points which were taken
as the ends of the specimens, and ~11 mirrors attached at these points
detected any rotatio~, which was then brought to zero by rotation of the
loading heads. While this system, of course, permits errors, it
eliminates the systematic errors which might seriously affect the
statistical information desired.

Description d Apparatus

Figure 1 shows a diagrammatic sketch of the loading apparatus and
the optical system used for detecting rotations of the ends of the
effective length of the specimen. The telescope is focused upon the
image of the scale reflected through the back mirrar and small mirror
on the specimen. With the back mirror placed about 10 feet fran the
apparatus rotations of the 8~li mirror of the order of O.OO1° produce
detectable shifts of the scale point seen against the telescope hairMne.

Tn the photographs of figure 2, the s~ctin is shown at (a), with
the small mirrors defining the effective length at (b), and with the end
clamps in the loading heads at (c). The load can be measured by the
dial gage (d) which masures the deflection of the fI.atsprings (e); the
working sections of these springs ems machined down frcm a thicker stock, -
with fillets at the ends, which largely eliminates hysteresis. The
screw (f) sd.vancesthe loading head to adjust the axial losd, while the
screw crank (g) rotates the loading head about the axis (h) to bring
rotations of the small mirrors to zero.

Deviations frcxnstraightness are measured by the ticrcmeter screw (t)
attached to the carriage (j) which moves upcm a track formed of tightly
stretched piano wiies (k). The micrometer carries a silver-plated tip
upon its end (1)j when this tip touches the specimen an electrical circuit
is completed. ~ using a galvanometersin this circuit, measurements can
be made which are accurate to a fraction of a thousandth of an inch.

During =asurement of the deviation from straightness in the initial
no-lod condition, in order to insure freedom frcm accidental end forces
and mcments, the specimens were held @ at the center by a narr= clamp.
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Since some of the s~cimens were very flexible, the weights of the two
ends of the specimen were balanced by overhead floats at the quarter
points, as shown in figures 3(a) and 3(b). Measurements of deviation
were made at the center Ifne of the specimens at eight points along the
length, as shown in figure 4.

●

�

.

RESULTS AND DISCUSSION

As mentioned previously, the inadequacy of classical stability
analysis lies in the neglection of the limit to elastic action Or actual
mterials and the defects always present in actual col~sj the defects
cause bending stresses to develop before the stability limit is reached,
and these stresses cmibine with the direct-stress (and with any initial
stress which may be present at the critical point) to precipitate early
yielding.

I&cm the standpoint of column bending the irgportantdefects are
geometric crookedness, lack of elastic homogeneity, and accidental
eccentrici~ of loading. All of these have a similar effect in praiucing
am initial deviation of the elastic axis of the bar frcm the straight
line joining the points of application of the resultant axial loads,
which is called herein the ‘~had line.tt

r

Tn a perfectly homogeneous column the elastic axis, which defines
the shape of the column for purposes of analysis by classical bending
theory, would pass through the centers of gravity of cross sections and r

share the geometric crookedness of the outer surface. Eecause of elastic
inhomogeneity frcm slag inclusions, gas bubbles, and so forth, and
because of the variation in elastic properties in the axial tirection
due to the randcm orientation of the highly anisotropic crystals of which
most engineering mterials are c~osed, the true elastic =is will suffer
an additional deviation frcxuthese centers of gravity, passing in effect
through the centers of gravity of cross-sectional areas weighted according
to the-local stiffness in the axial direction. Eccentricity of lading
shifts the load line and thus produces an additional deviation of the
ehstic axis from &is llne, as illustrakl in an exaggerated manner in
figure 5.

For purposes of this investigation Ml these causes of accidental
&tiationl can be lumped together. This total initial deviation of the
el%tic axis from the load line is designated by the symbol W (as

lIateral loading and built-in eccentricities also have similar
effects, aad it will be shown that *Y can be taken into consideration
along with the defects; however~ the latter are the main concern herein}
since their evaluation is obtiously the difficult problem.
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distinguished from the mwement under losd w) and ca13.edherein simply
the “deviation.” The starting point of any general column theory must
be the establishment of laws relating the magnit@es of the important
constituents of the de.tiationto the characteristics of columns on which
they deped.

Consider now the best way to measure the deviation and the charac-
teristics of columns which affect it.

The deviation W will be some functicm of the distance x along
the load line, a different function for each column. The most convenient
yay to describe this function is by the amplitudes of its hsrmonic
ccmrponents,and this proves also to be the most useful way to consider
its effect upon the buckling process. In the tests, details of which are
presented in appendix A, the amplitudes Wm of hsxmonic ccmponemts of
+e deviation of half wave length ~ were measured over lengths of bar
c’brrespondingto one wave length of the component. This was done by
tbating lengths of the bars as colunrasand using an extension of
Southwel.1’smethod (ref. 10) which had previously been develuped in
reference Il. A large nuuiberof lengths and t~cknesses of bsrs were
testedj the bars were made of three different standard materials pro-
cessed by standsxd methods. As ~ected, the deviation components were
found to depend very mi.uihupon the thiclmess and wave length, the ccun-
ponents with larger wave lengths compared with the thickness averaging
larger in amp13_tudethan the shcmter ones.

Experience has shown that, if a nuniberof sind3ar columns -e tested
which are as nearly identical in every way as it is possible to make them,
their strengths till.vary considerably, but quite definite average and
limiting (that is, msximum and minimum) strengths can be determined. E
the deviation ccxuponentsme measured, a corresponding variation (which
Is the chief cause of the variation in stiength) will be found, and again
quite definite average and limiting values can be determined for the
amplitudes of each harmonic ccmponent. This is what is meant by “awrage”
and “limiting” values of such quantities. The variations from the
average represent”&ue kceducible scatter, which can never be predicted.
However, the average deviations can be allowed for, and the scatter in
strength can be allowed for in a more rational and economical way than
by blanket factors of safety by taking into consideration the maxinmm
deviations which prcihzcethe minimum strengths.

E a series of related columas, identical except for a dimension or
s- other characteristic which can be varied continuously, is tested and
the amplitudes ~ of deviation components are plotted against this

characteristic, average and limiting curves can be determined, which
describe the function by which the average and limiting values of Wm

are related to this chsxacteristic. If the relation between the average
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and limiting values of Wm Emd all the column characteristics which
influence them can be determined, proper allowances can be made and
uncertainty in design can be reduced to tiue scatter. Insofar as these
factors are not determined and proper allowances are not made, the
uncertainty regarding the effect of any characteristic is added to the
true scatter.

The characteristics of columns upon which the deviation de~nds
might be classified as follows: length and end conditions, size and
shape of the cross section, the material, and the process by which the
column is fabricated (which, of course, includes methods of straightening,
if any, standards of inspection, etc.). The first two, length and end
conditions, determine the wave lengths which are impcrtant in the
buckling process and, hence, have a very important indirect influence
upon the detiati~j however, these characteristics are fully taken care
of if the effect of the wave lengths of the deviation components upcm
their amplitudes is considered.

The shape of tie cross secti.onwill usuallybe associated with the
fabrication process, and this in turn is likely to depend upon the
material; these three ch~acteristics are thus closely associated. In
general, it is impractical to vary these characteristics continuously
or describe them by nunibers. Hence, their effect upon Wm, while it
may be real and important, cannot well.be expressed analytically but ?
can best be described and tak&n into account by a numerical coefficient,
which is herein designated by C or K and whose value can be tabulated
for important distinct combinations of these characteristics. !’

l?YnalJy,the size of the cross section can, like the ,yavelength,
be described by a nuuiber,and its effect upon Wm can theoretically
be expressed analytically. For columns of a given shape of cross
section (that is, for geometrically similar cross sections) the size of
the cross section can be described eqyally well.by any characteristic
cross-sectionaldimension, such as thicbess t, distance from the
neutral axis to the farthest fiber c, or radius of ~atim p (all.
&ken for the direction of buckl. ingbeinginvestigated).

The desired functional relation thus should involve a numerical
coefficient and three distances Wm, Zmy and, say, t. Since it must
be dimensionally consistent there is no loss in generali~ if it involves
only sny two independent ratios between these distances, say ~/t and

2@. It
these two

seems logical
ratios, which

to try first a power-function relation between
can be expressed as

()wm_c~n
t t

(1)
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where C and n me to be determined. It seems likely tihatthe
exponent n depends upon broad probabili~ factors and may be substi-
tially constant for all ccMmns.

Figures 6(a) to 6(c) show measured valueE of W~t - lm/t

plotted against each other on a logarithmic scale. Points labeled 1, 2,
and 3 were obtained, respectively, from the magnitudes of the fundsmentsJ-
component and first two hsmnonics of the total deviation in the test bars.
Zhe plots show, as is to be expected, a great amount of scatter, but
they also indicate a definite tendency for W~t to increase rapidly

as l~t increase6. The Lines mirked “max.’;describe the ixend for the
higher points. The lines marked nav.” should have a scmewhat steeper
slape, corresponding to a larger value of n in equation (1), to fit
the points best. However, these tests cover the range & wave lengths
important for medimnand long columns but not for shcmt columns. The
lines shown, when extra~olated into the short-cc&mn range, give results
which are in line with the empirical curves and column formulas in
cannon use, while steeper curves would be less conservative; in the
absence of data on short columns it seems reasonable to use the relations
given by the Mnes showm These lines correspond to a value of 2 for the
exponent n in equation (1) and values of C of about 0.00003 for the
mxdmum lines and 0.000007 far the average lines. Even this value of n
is larger than the values of O and 1 which were assured (on the %asis
of practically no evidence) in the references previously cited, except
for a recent paper (ref. 32) in which the value of 2

IiI the a~endix B the following general formula
load upon a colunm at which yielding starts:

P=
N-m

was proposed.

is derived for the

(2)

where

h thl,s formula Py = AE$ is the cross-sectional area A tires the
yield stress ~ (which may be defined in any way desired ad reduced

to allow for initial stresses when this seems justified, as discussed
in appendix B), Pcz is the buckMng lmd given by classical stabili@
theory (defined as in appendix B in case of a distributed load), P is
the correspondingly defined load at which the stiess ~ is reached
at the most highly stressed point, and WI is tie amplitude of that

hsrmonic cmponent of the deviation which has the s= ha~ wave
length 21 as the fundamental (longest) harmonic component of the
buckling defl.actionpredic= by classical stability theory. The
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length 21 k what has

column’tlength, so that

To Sill@i& the final
equation (1) the following
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been called the “reduced” or “equivalent hinged ,
.

using this with
yielding starts

where

(3) ,

results it is convenient to substitute for
equivalent relation:

cw~ ()K1/2zm n

F= ‘~

_ K2m2
X2$

(n= 2) (4)

equations (2) and (3), the expression for load at which
becmnes

P= N-
m (5)

2N = PY + Pcz

= Py + Pcz

.()]1+ $&a

+KEA (n = 2)

For some purposes it is more convenient to write this equation in krms
of stress& .- Dividing through by the cross-sectional a&a A gives

where

.~+sc~+-m (n = 2)

s = P/A is the average stress at which yielding starts, and SCZ = FCZIA =

fi2E##z12 iS
(-ulai is, the
perfect).

the average stress ‘givenby
stress at which instability

classical stability theory ‘
would occur if the column were

r

*
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Equation (5) or (6) can
three nondimensional ratios,

my~, as follows:

where

2q=l+

=1+

11

readily be put into a ?orm involving only

(7)

(?T’2F3’-E
gJ

%
(n = 2)

These eqyations, cm other equivalent farms, represent a true
“universal theory” for column load at which yielding starts. Equa-
tion (7) can easily be put in chart form; figure 7 shows such a chart
for the case n = 2, while figure 8 shows how such a chart WOUM be
affected by different values cf n. These charts can be considered to
be generalizations of the famLliar chsrt cd average stress versus
slenderness ratio and cover the full range from zero to infinite
slenderness ratio.

An interesting point brought out by these charts is that only with
values of n hss than 2 would the loads at which very long columns
first yield a~roach tie classical s%abili~ values. H n = 2 they
approach values which are equal to PcZ/[1 + (KE/~)] . For values of n

-* W 2 they would approach zero. It 1s common experience that
ultimate loads of very long columns do approach tie classical s~bili~
values, but it seems probable frm the above that yielding starts at
considerably lower values.

Calculations can readily be tie frcm equation (~), (6), or (7) or
charts such as figure 7, using values of K from tables, of which table I
way be regarded as a first step; K may be regsrded as a “roughness
factor,” -asuring the general roughness of construc*imL It is a pure
nuuiber,depending upn the associated factors of cross-sectional shape,
m.terial, and fabrication processj average smd limiting values of K
can eventualQ be determined for all the ccdbinations of these factors
of practical importance. This is a large order which, however, it will
be quite practical t-ofin in a fairly inclusive manner by using the
extensive column data in the literature, that is, by calculating the
tiue of K reqtied to - the theory fit SUCh M-j these ~lcti-
tions, however, will have to wait upon the extension of the theory to
cover ultimate loads, since only ultimate-load data seem to be available.



12 NACA TN 3415

It is expected that K will not differ widely for variations within
broad categories such as might be described by the words “refined con- *
Struction,“ “average construction,” and “rough construction” and that a
broad survey of available data, involving the determination of a single
number to characterize each type of construction, could permit a consol- *

idation of information, with the elimination of msmy discrepancies, and
a final relatively simple tabulation from which engineers could choose
values applying closely to any situation.

The values of K determined for the small range of column types
which the present tests cdver represent a start in this direction, but
the main purpose of the tests was to check the general form of equa-
tion (1) and determine a reasonable value for the exponent n. As has
been mentiaed, n likely depends upon broad probability laws and is
subject to little variation. The tests seem to bear out this tiew.
Failure to use the most suitable value of n increases the gap between
the limiting values of Kj that is, the proper dhoice of n is a uans
of reducing unpredictable scatter to the minimum.

Illinois Jhstitute of Technology,
~cago, ill..,November 6, 1953.

P
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APPENDIX A

DEVELOPMENT OF HARMONIC ANAI.x%rs

lh?omthe principles of harmonic smalysis, harmmic components
~ cos EO_CX/Z(where m= 1, 2, 3, . . .) of a deviation D(x) of
the specimen will have amplitudes

~ = (1/2) J22D(x)cos mX/Z dx
o

d2 COS w— + C2 Cos
8

In particular, the first three

[
D1 -0.231 (al+ a2 - dl

= + b2 COS
13mx 15mll

8
—+a2cos —

8 8 )

harmonic components will be

-d2)+~”414(%+b2- cl- C21/

(8)

(9)

These formulas permit the determination of the harmonic components
of the deviation fran straightness of the outer surface of the whole
specimen, initially and under bad. = tie tests orilythe symmetrical
components of the deviation such as those given by equation (9) were
studied, since the nonsymmetrical buckling males of a fixed-end column
are less sh.@e and easy to study by tie present methcds, and these
symmetrical components covered as great a range as could have been
covered by considering the nonsymuetrical modes. For components such
as those given in equation (9) it makes no difference whether the
distances al, bl, cu . . . are measured frmu the load line or frcrn
any other paralkl or nearly parallel straight llne, since a linearly
_ng deviation contains no such,components.

The following definitions are helpful in discussing the method
used for determining the totsl deviation, including the part due to
inhcmogeneities:
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geometric deviation or crookedness, that is, the initial
deviation of the median line of the column from the
1- line

.

Wtl nongecmetric deviation (due to inhomogeneities)j that is, ●

the initial deviation of the elastic axis from the
median Me

w= W1 + Wtt total initial deviation of elastic axis from load line

w movement due to load

These are illustrated diagrammatically in figure 9 for the no-ti
and loaded condition of a fixed-end strut such as that used in the tests.
General expressions for w and W (with similar expressicms for
d W“) can be taken as

w

The mcment

w= Wo + V. x/2 4- ~ Wm Cos Uhtx/zi-~ Vp sin prxjz
m P

1
= W. + V. x/1 + ~ Vm Cos mtx/z -1-

m

equilibrium equation of elementary

z Vp sin pxx/Z
P J

bending theory is

-EI d%@# =

and the boundary conditions

M=~+EIo(X.+

are x= *2

w= dw/dx =.O

2) + P(w +- w)

W1

(lo)

Substituting expressions (10) into these e uilibrium and boundary condi-
tions and using the relation PC2 = 4JT2EI/?2z)~= YC2EI/12 give

X{w.- ~~c2j9 - +.} Cos -/2 +

x(%- pbp’)- yp] sin P’=/z +-

~p + SO(X +- z)/P+’(Wo + w.) + (v. + vo)x/2 = o



These relations are satisfied if, and in general only if, m = 1, 2,
3=*., P= 1.4.3,2.46, 3.47 . . . x

ye- [(P%+)- +p =o

ITm- [m++) - ~Wm = O1 (13)

Measur~nts of al, b~, cl, . . . and use of equations (9) in the

no-load conditim give Wm;, while similar measurements and calculatims
under a 1- P give Wmf- + w~ subtraction of these gives wm. Knowing
P end calculating PCZ frcm the Gnsions and modulus of elastici~

of the material, the amplitude of the total deviation components Wm can

then be obtained from the last equation in equatims (13). W practice,
however, it was found easier and more accurate to measure Wm; and two
values Wm’ + W= and Wm’ + V* tier tWO tide= clifferent 10adS Pa

%@ %“ m term Pcz can then be elhinated between the two relations

h= [(*c,/Pa)- +iua
wm= [(m+c,pi)- +ti

Wm =
V~W~ (Pa - %) (14)
%a% _ W&a

With this formuk for ~, all measurements required are of the same
type end only relative values axe needed for the loads Pa and ~.

In figure 10 values of the ratio W~t obtained f= the 2024-T7
specimens, are plotted against l~t, where Zm = Z/m is the half wave
length of each harmonic c~onent. Points hbeled 1, 2, and 3 give,
respectively, the magnitudes of the fundamental ccmponent and first two
harmonics of the total deviation, in bars of length 2Z. ~s infor-
mation is needed in setting up the theory for the buckling of bars of
length 223 the fundamental ccmponent is by far the most important
ccmponent, but the’higher harmonic caaponents have s~ effect upon the
bending stresses Prducedj and this effedt must be evaluated (considered
in appendix B] before it csn safely be disregarded:

It was also desired to use the information obtained re~ding the
size of the higher harmonics in order to extend the data regarding the
size of the fundamental components into the range of shorter columns.



This, however, cannot be done ~ect~j that is, the average and limiting
magnitudes of the third harmonics of bars of length 22 are not neces- .

sarily the same as those M the fundamental components of bars of one-
third this length. Zf a bar of length 2Z is divided into three sections
and the fundamental components are determined for each section, then the ●

algebraic averages of their three magnitudes should be the same as that
of the third harmonic found frcm the original bar. In many cases, how-
ever, the fundamental components of the short sections will be of opposite
sign and will cancel each other as far as the third harmonic of the
original bar is concerned. For the purpose of extending the data
regarding fundamental components into the range of shorter bars, the
absolute values of the fundamental components of fractions of the bars
are needed. These values could be obtained for the geometric devia-
tion Wt merely by using known data to make separate harmonic analyses
for each fraction of the bar. By the same principles as those expressed
in eqyation (8) the average of the absolute values of the fundamental
component of each half or third of a bar is

(1~’ =0.177 al - bl - 1)cl+dll+ la2-b2-c2+d2

U I
~f = 0.251 0.414(a2 - cl) - (bl - c~ +

I

(15)

I
o.k~ Cl + C2 - dl - ~ I + 10.hlk(a2 - c2) - (b2 - c2)

II .

The inaccuracy of harmonic analyses based upon so few points is probably
made up for by the fact that each value of D2~ or Bjf remesents an r
average for two or three bar lengths. Of course, this averaging process
also eWninates some scatter, but the scatter of values obtained from
such a limited number of points would probably be misleading.

me second and third monies of the geometric deviations of all
the columns tested were calculated by equations (9) and (15). The
values for W2’ obtained frcm equation (15) averaged 1.2 times those

obtained from eqwtion (9), while the values of W3~ averaged 2.0 times

those obtained”franequation (9). Figures U.(a) to U.(c) are plotted
fram the data obtained frcm equation (l~)j thus, although the nunibers1,
2, and 3 indicate the source of the data, all the points can be taken as
representing the magnitudes of the fundamental components of the geo-
metric deviation of bars. Formulas (15) could not be used in calculating
the total deviation, because the end conditions of sections of a bar
under load are obviously not those of fixed ends. However, there is no
reason to be~eve that the algebraic averages and the averages of
absolute vdlleS Of fundamental ccmpnents of sections of a bar would
have a different average ratio for bars under load (if the sections
had been tested as separate bars) than for bars under no load. Hence,
the values for total deviation components W2 were multiplied by 1.2
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and those for W3 by 2.o in platting the charts of figures 6(a) to

6(c) and it is considered that these charts therefore show, to good
approxi=tion, the magnitudes of fundamental components of the total
deviation.

Ccrrparisonof the values of the total deviation givenby figures 6(a)
to 6(c) with values of the geometric deviation givenby figures n(a) to
n(c) does not reveal very much difference in slope and in average values
and not very much difference in the scatter. Fran this, the important
conclusion may be drawn that the much easier measurement of geometric
deviations will hereafter be sufficient and should give results which
are representative of total deviaticms. However, this result is in no
sense due to the effects of inlmmogenei.tiesbeing small - as a matter
of fact, values of Wmf’= Wm - Wm’ yroved to be as large on the average
as Iim and Win’,as is indicated by figure E! for the column made of
7075-T6 aluminum dloyj similer results were obtained with the other two
materials. The reason why, in spite of this, there is so little differ-
ence between average and limiting values of W and of W’ is that the
deviations caused by inhomogeneities W“ are as often in the apposite
d~ection and subtract from those due to geometiic curvature as they are
in the same direction; hence, these deviations have little effect upon
the average values and not very much upon limiting values. However,
it would have been impossible to predict this result im advance or to
have verified it without an experimental program similar to the present
one.
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APPENDIX B

THEOREIZCAL DERIVATION

Consider first the
matbti~~
plane, taken as that Or

Siqple Case

simplest case, namely, that of a uniform column
of such proportions that only buckling in one
the paper, need be considered. Figure 13 shows

the elastic axis of such a hinged-end COLULIXIof length Z, losded by an
axial force P, and with initial total detiation W and movement under
load w. Neglecting the weight or other lateral loading (which ch be
considered by adding the corresponding deflection to W, as discussed
Mter), the equilibriti is given by

-EI d2w/&# = P(W + W) (M)

and the eti ccmditions are

x= 0, z

w=d%/d#=O

These relations cam be satisfied if

w. x wm dn mx/ z
m

w = ~ Wm sin m3tx/z)
m.

.

P

and this expression for W is sufficiently general to represent (tMt
is, converge to) any possible deviation shape. Substituting expressions
(17) into equation (16) and using pc~ = #EI/z2 gives

whloh is satisfied, in general, * if

wm = Wm/~*c~/P) - 1] (18)
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It is general e~rience
case because of a ccmibinaticm
stress at an extreme fiber of

19

that yielding will first cxcur in such a
of the direct stress P/A and the bending
the middle cross section. !tMs will occur

when the yie3d-point stress in ccqmession

using rehtion (18)

Multiplying through

-thisbeccmes

by A gives

(19)

(20)

Now, frcm figure 10 the harmonic components of the deviation af a
column are on the average related about as

or

!p-=c(+)’=c(~)’
1

(Y?2Z53=CLt t
so that, on the average,

IW4=Iwd

Iwd=lw@

(21)
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Equation (19) then becanes

[

.p+pcl_sw_l* (pcl~)-~ .*.
‘Y

I]

(22]
(pcl/p) -1 3 pclp’) -1

The bending stiess will.increase and approach infinity as P approaches

Pc2 so that yielding must always occur before P reaches this value.
For values of P between O and Pcz the second term in the braces

of equation (22) never exceeds 1/27. For practical struts its maximum
value would be considerably less, and further terms of the series would
be much smaller. Hence, in this case the effect of the higher hmnonics
upon the bending stress can be neglected; in a~ case they would only
affect the scatter, since they are as likely as not to cause bending of
opposite sign from the -f%ndmental component, as suggested by the ~ sign
in equation (22).

Neglecting all but the first term in the braces of equation (22)
and solving for P give equation (2), which has pretioudy been discussed.
It might be pointed out here that in applying relation (4) to the case of
hinged struts the values’of K found from figure 6 should probably be
multiplied by 1.2, since, as discussed previously, values higher by this
amount, on the ave~age, would probably have been obtained had the funda-
mental cmponent been =asured over half the length (by testing hinged-
eti columns) instead of over the lengths actually tested. This factor

.

has been included in making up table I, so that the values given in this
table are suitable for hinged-end columns. .

R&ore finishing tith this case scme discussion might be made of
the effect of initial stresses and lateral loads or built-in eccentric-
ities. Mtial stresses distributed on a microscopic scale (due
presumably to yielding under previous small loads caused by stress
concentrations around crystals and inclusions) can probably be neglected,
like these stress concentrations themselves, since such effects are very
local and scattered and probably have no significant effect on Over-aIll
shape. However, in cases where significant initial compressive
stress Si in the axial direction is known to be present on the outer
fibers of the column (as may somet~s be the case because of rolling
or other fabrication processes) the stress Si should etidently be
added to the right-hand side of equation (19). This is the same thing
as substituting a “reduced yield stress” sy’=~-sifor E@ and
this seems to be the simplest way to allow fu such effects.

Deflections due to known lateral loads smd lmm?n built-in eccen-
trici~ add to or (Just as likely) subtract frcm those already considered.
tit the amplitude of the hm?mmic camponent of the total detiation due

6

to these causes, having the s- shape as the fudamental canponent of
.
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the buckling shape predicted by classical st.sbili~ theory, be Ul,

which corresponds to the amplitude WI in equations (4) and (5) due to

accidental causes. Then, if Kmax‘ is a m~ified value to be used
instead of ~ to allow for the effect of Ul, there result

()Cwl . K&&%y n
F Yf,

and

L -1

Eliminating WI smd solting for b‘ give

(n= 2) (23)

Thus, ~v shouJ.devidently
case ~v should be figured

21=

not be changed unless U1 > WI, in which
from U~ instead of WI.

General Case

The foregoing results were derived for the special case of uniform
hinged-end columnar It is easy to show that figures 7 and 8 and the
equations from which they are derived apply to ~ column when KE/~ = o
(that is, when there is no deviation of the elastic axis-from the load
Mne) provided tit PCZ or SCZ is defined as the classical stability
limit for the column in question. This is true because when PCZ > Py
yielding evidently will occur as soon aa P = Py, while if PCZ < Py

elastic buckling will.occur first but will immdlately result in infinite
deflections and, hence, imt’initebending stresses and yielding, so that

Pcz = P.

It is not the purpose of this paper to discuss classical stabil.i~
limits, solutions for which can be found in the literature for a great
variety of columns. The interest here is in the effects of defects and
of yielding of the material, and it remains to be demonstrated that these
effects, as exemplified by the lowering of the curves in figures 7 or 8
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as KE/~ increases, exe the same for all columns. It will be shown
that with certain simple mcdificatims they probably me. Because
different questions arise in different cases regszxiingsuch matters as
the point in the column where yielding will first occur, it would be
difficult to set up a general solution covering all @pes of columns.
Pqrt of the demonstration will therefore have to be restricted to
discussion W specific cases; in doing this an attempt will. be made to
span as far as possible the range covered by actual columns.

That the foregoing results apply approximately to all types of
columns can be shown by the following reasoning. It is well lumwn that,
whatever the cmsplications - Variaticms in ~ecticms, end conditions
(including negative fixity), elastic support, and so forth - the
equilibrium equation for any perfect strut can be satisfied by an
infinite number of deflection shaps or “buckling modes,” each asso-
ciated with a psxticul.arvalue of the had. Let w= ~f(x) represent

such a buckling mode where f(x) defines the shape and WI, the magni-

tude of the movement, and let ~ be the associated buckling load, that
is, the load at which equilibrium can exist when the column without
defects is deflected in this shape. Now ccmpare the equilibrium
equations (representingthe equilibrium of exbernal mcments and internal
resisting mcments at every section) for this perfect strut and for the
same strut with an initial deviation W = Wlf(x) having the same slqe

but a given fixed magnitude defined by Ml. ●

Then, the term in the equilibrium equation representing the mcment
of the axial force will be ~w = ~wlr(x) for the perfect strut, where -

~ can have any value. For the strut with initial deviation the corre-
sponding term till be P(w+ w) = P(W1 + ~) f(x}, where WI is given

but either the Imd P or ~ is to be determined. All the other terms
till be identical in the two equatims. llence~ f(x) will t3160 be 8
solution for the second equation (satisfying the same boundary conditions)
and the folkwing relation must exist between the coefficients of’the
above terms:

solving for WI

(24)

Om way to describe the above result is that, if any column has an
initial deviation in the shape of me of its buckltng modes, then a
movement of this same shape with a magnitude given W equation (24] will

A

occur under an axial load Pj this movement tends to infinity if P
approaches ~, the buckling load ccmresponding to this rode. If the .
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column has an initial deviation consisting entirely of components of
a such shapes, then corresponding movemnts given by equation (24) will

occur for each of these cmponents and will superpose (assuming that
the total movements are sswll).

.

The next question is whether any possible deviatim of a column
can be’separated wholly into canpo~nts having the sha~s of the buckling
modes of the column. It would be easy to answer this question if
buckling modes were represented by normal functions, like the “nornd
modes’*of vibration of an ehstic body. Buckling-mode functions are not
necessarily normal to each other (consider, for exsmple, the symmetrical
modes of a uniform fixed-end column), but they nonetheless appear to
have the pruper~ that any possible deviation of a column can be decom-
posed into components having the shapes of tie buckMng modes.

Now, fW any end-leaded colum (and for any column with losds
applied between the ends, provided that P and ~ are defined as the

.axial load on the critical cross section due to loads distributed in
the prescribed mnner), yielding will occur when

%=:- ()dz
Eccrwl 4 P W1

()

d2f

d#’ cr = ~ - ‘cc’ (pCZ~) -1 = Cr
(25)

.
where I&, Ccr, and (d2f/d@ ~ are, respectively, the area, distance
to the farthest fiber and curvature at the critical cross section (where

. $yielding first occurs , Pcz is the lawest of the values of ~, and
f(x) and W1 are, respectively, the corresponding buckMng shape and
the magnitude of the corresponding ccmponent of the Initial deviation.
Only this component of the initial deviation is considered in equa-
tion (25). The effects of the other components were considered in the
case of a simple hinged-end column and found to be negligible, but this
must be reconsidered in other specific cases; in any case these effects
will be negligible when Pet/T is close to unity, SfiCe the Prtiry

term considered in equation (@ then “blows up” while other tirms
remin small.

Now, it is general e~rience that f(x), the shape of a buckling
mode, is always either a harmonic function (say a sine function but with
nodes not necessarily at the ends) or close to such a function. E it
is such a function, equation (25) corresponds exactly to the previous
derivation and gives the same results. ~ f(x) is not such a function
(as in the case of variable cross sections or loads distributed along
the length) it can certainly be represented closely by

+
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f(x) =

where 21 has the
~lUeS Of a and

sin Ycx/zl + a sin 2nx/zl + b sin 3Ycx/zl (26)

same maning as in its previous use and where the
b are limited by the fact that the curvature may

come to zero (because of large locai bending stiffness) “insome par~ of
the primary wave but cannot reverse in sign. Considering these limita-
tions, it is possible to calculate limiting values of (d2f/dx2)a,,where
the critical section is taken as that at which the curvature d2f/dx2$
and, hence, usually the bending stress, is a maximuni. These 1.

Y
ting

values are frm .JC%12 to -~2/Z12, while the value -fi2/Z1 would
be required to conform to the previous derivation. It can then be con-
cluded that, if only that cqonent of the initial deviation which has
the shape of the buckling mode is considered in calculating stresses,
the results obtained for simple hinged-end columns can be applied to all
columns provided that the values of K obtained for simple columns are
multiplied by factors ranging frcm 1 to 2. _esd KdWs
magnitude, of course, produce much smalhr changes in P or S, as can
be seen in figure 7 or 8.

Extreme Cases

Now consider some extreme cases more closeIy. Considering first
the effect of end ccmditions, at one e+treme there is the case of a
column free at one end and fixed at the other; this can be considered
to be half of an equivalent hinged-end column consisting of the column

.

—

.

and its reflection in the plane nomal to the lead line at the fixed end.
*

E z is taken as the length of the equivalent hinged-end colunm the
eatire derivation given previously applies to this case.

At the other extreme, the case of a fixed-end column has been
studied previously for a different purpose. The critical section in
this case will be at one end, where the maximum bending due to the
deviation components having the shape of the pri~y (s-tiical)
lmckling mode and the first antisymmetiicalmode will add to each other;
there wilJ always be one si& of one end where these and the direct
stress are all of the same sign, but the stress due to the neti symmet-
rical mode will be as likely to subtract from this, as to add to it.
Then, using equations (10) and (13), yielding will occur when

.

—



The ~um value of the quantity in the braces occurs when Pclp+al
. and is 1.34 t 0.13. l!komthis it may be concluded that, to be on the

safe side, the values of ~v o%tained for simple columns should be
increased by a factor of 1.34 and those of ~, by a factor of 1.47..
However, for Pc#+l the factor would be unity; for Pcz/P = 2
these factors would be 1.23 and 1.30, respectively, and so on.

Consider next the effects of nonuniformity of cross section. Using
figure 13 let the moment of inertia of cross sections be

I(x) = 10
sinfix/Z +~ap sinPfc(x/Z)

{P =2, 3, 4, . . .) (28)
sin fix/Z+~p2~ sin p(x/Z)

which, with suitable values of ~, H readily describe any practical

variation of stiffness; with one even term ~, this expression can
describe a wide variety of unsymmetrical variations, or with one odd

.

.

.

.

term a3, of
equation

and bou?id&y

symmetrical variations of stiffness. -n, the equilibrium

-EI(x)

Ccmdltions

w

d%@#’ =P(W+ W) (29)

x= 0,2

= d%/d# =

for hinged ends are exactly satisfied if

o

sin pxx/z]

sin pYcx/Z]
1

Using expressions (30), equation (2g) is satisfied if

(#/z2)~w = P(w -t’w)

For W1 = O (perfect colmm) this would become

3’c%Io/22= Pcz

so from equation (31)

(Z@)

(3U

(32)

W1 =TJl[(PCz/P) - q
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Yielding will then first occur when

~2Eccr
E+_

W1

‘A [ 1

1

sin fix/Z+ ~p2~ sin prx/Z ~ (35)
22 (p.~pq -1

PY=P+PCZ
cwWIA/~

[ 1sti YCX/Z+ ~ P2~ sin pfix/Z~r
(l?.@ -1

Since, from equation (32), ~ etidently corresponds to I = A# of a
uniform column, it seems very reasonable to assunE that cwWIA/Io till-

have about the same average and limiting values as are found for Cwlfpa

in a unifA column. The equations smd charts obtained for @form
columns should then apply to nonuniform columns if the values of K
found for uniform columns are multiplied by the value of the quantity
in brackets in equation (33).

Choosing x to maximize the expression in the brackets, It is
found that thts quantity may have values as high as 2 for the extreme
cases contemplated in the previous discussion of the general case. How-
ever, it is found that this quanti~ never differs ~eatly fran unity
for variations which would be used in practical columns and, in fact,
may be a Mttle less than unity. For colunms symmetrical about the
middle, with a ratio of stiffness in the center to stiffness at the end
of 2:1, this quantity is about O.9; for a stiffness ratio of 3 this
quantity is about uniiqy. The effects of end conditions and of the
other ccaponents of the initial deviation (which are not considered in
the above discussion) should not be very differemt from tiose for uni-
form columns, and so it may be concluded that the results obtained for
uniform columns can be applied to practical nonuniform columns also.

Next, consider the effect of intermediate loading. For simplicity
the extreme case was studied of a hinged-end column with sxial loads P
ap@iedatt heend x= O,andat the middle x= 2/2 of figure 13.
Then, a good approximation to the bucklf.ngmode shodd be

where WI and a are to be determined by energy considerations. IA
the component of the deviation of the same shape be

W = W~~in fix/2+ a sin 2mx/Z] (34b)
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Then, the total

adwl —
awl

[
$W +

27

ener~ change during a smsdl change in WI is zero:

(35)

and (%b), carry@ out the integrations; and
sin.tultsmeouslygive

a = 0.066

with a similar equatim for a small.change in a. Using equations (~a)
solving the equathns

1

1.9- q = I?(I? + w)
22

1

from which PCZ = 1.9#EI/Z2 is 0b_b3ined. Yielding occurs tien

()
%=@~=

(36)

(37)

The value of the quantity in brackets in equation (37) @ about 1.12.
Thus, it appears that the results obtained for end-loaded colunms will
apply close~ to columns axially loaded at intermediate points, althou@
a sma13.increase in the value of K might be ad-sable. As mentioned
previously, P and Pcz must be taken as the axial loads on the critical
section (where yielding first occurs) due to the load system distributed
in the prescribed manner. This is necessary in order for the term P/A
in eqution (37) to represent correctly the direct stress al the critical
section. Ih the case just considered the critical sectim was at
x s 0.42 (betieen the 10S&) so fiat ~S condition was easily satisfied.
k case of a distributed load the l~tion of the critical section can
probably he est-ted sufficiently closely and should be at about the
above location for say ant@nmMxical distribution of load such as a
uniformly distributed load.

As a final exsmple, consider the case of a column on an elastic
fOundation. E the hinged-end column of figure 13 has an elastic
sqprt of B (force per unit length per unit defl.ection)the equilib-
rium and boundary conditions can be satisfied %y the seineexpressions
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(eqs. (17)) for w and W as
previous paper (ref. U.) it is

were used for
shown that in
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the s@ple column. In a
Buch a case

+ w~ (38)

.

.

where the expressicm in the parentheses on the left side represents the
buckling stress Pm correspaxting to tbe buckling-mode shape sin mxx/z,
as can be seen by letting Wm = O in equaticm (38) . Buckling will occur

with the number of half waves m = m’ corresponding to the smallest
—

Value Of Pm; that iS,

The smallest value which the expression in the parentheses on the right
side can have is 2, which occurs when

for which

(ko)-- ““ –

.

PC2 = 2@
.

Assuming for simplicity that the length is such that m’ given by
equation (40) is an integer, and considering only three components of
the initial deviation
equations (17), (38),
for yielding:

%=:’

.Q+
A.

W, correspcmding to ‘ml, ‘m’ + 1, & m! - 1,
(40), and (21) lead to the following condition

()

EC &
&.

(

-A%L~~~nMZ+
(2/Iu)2(Pc#P) -1 2 -

(41)
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(

Pcz P+l the value of the largest term in parentheses in equs-

(41 is unity and the results derived for simyle struts then apply
exactly to the present case. The e~ession has its largest value if
P@-oJ when it becomes

.
.

—_6J2LQkE &?2!_6~nkk&k?3
XQ’YCX+sin —
1-

‘F2)2+(AT’ FG)2+($J2 ’42)

This is a function of m’ and can be evaluated without great difficulty.
It is found that points can always be found where stresses due to the
first and second, or the first and third, terms have the same sigh as
the direct stress (whichever ccmibinati.ongives the Mrgest value is
chosen to determine &v), but the stress corresponding to the remaining
term will then be as likely to subtract from as to add to this amount
(and so may be used to determine ~).

Using these findings it is determined that for Pc2/P~ the
value of &v for simp~ columns should be multiplied by approximately

2-[’#(m’)2] andthe valueof ~,by 3- [2/(m’)2]j*ere m’ iS
the nuuiberof half’wayes in which the column will.buc~e accarding to.
classical stability thecu’y. Thus, a column with a mild elastic support,
such that the buckling shape is still one half wave, would require no
correction for K.. However, a colunm which is so long that it buckles
in many waves but is at the ‘sametime so strongly supported that. P is
small ccmgared with the classical stability Marit (that is, the column
is in the short-column range) may require corrections by a factor as
high as 2 for ?QV and 3 for %, because there Is only a slight

clifference between the classical stabi~ty lccuiand the loads corre-
sponding to neighboring buckling modes; and, hence, the corresponding
components of the deviation contribute a good deal.to the total
bending stress.



30 NACA TN 315

REFERENCES

1.

2.

3*

4.

5*

6.

7*

8.

9.

10.

11,

L2.

Jasinski, Felix S.: La Flexion des pi~ces comprim6es. Memoirs
et dot., “Ann.ponts et chauss6es, s~r. 7, t. VIII, no. 39, 1894,
pp. 233-364.

.

.

Msrston, A.: Theory.of the Idesl Column. Trans. Am. Sot. Civil
~., VO~S 39, J~ @8> PP* ~08-~139

Jensen, C.: The Quebec Bridge Disaster. Engineering, vol. LXXXV,
no. 2205, Apr. 3, 198, pp. 433-434.

Lilly, W. E.: The Strength.of Columns. Trans. Am. Sot. Civil E@.,
vol. 76, Dec. 1913, PP. 258-274.

KAyser, H.: Buckling Tests of Double-fisme !lkusses. E!atechnik,
vol. 8, no. U, M. 18, 193o, PP. 2oo-21o.

..
Salmonj E. H.: Steel Column Research. Trans. Am. Sot. Civil Eng.,
vol. 95, 1931, pp. 1258-1267.

Timoshenko, S.: Working Stresses for Columns in Thin-Walled
Structures. Jour7 Appl=.Mech., vol. 1, no. 4, Oct.-Dee. 1933,
pp”. 173-177. (Calculationsby D. H. Young, pp. 174-175.) .

Van den Broek, J. A.: Rational Column Analysis. Eng. Jour., vol. 24,
no. I-2,Dec. 1941, pp. 570-583. .

Van den Broek, J. A.: Column Formula for Materials of Variable
Modulus. ~. Jour., vol. 28, no. 12, Dec. 1945, pp. 772-777, 783.

SOuthwel.1,R. V.: On the Analysis of Experimental Observations in
Problems of Elastic Stability. Woe. Roy. Sot. (London), ser. A,
vol..135, no. 828, Apr. 1, 1932, pp. 601-616.

Donnell, L. H.: On the Application of Southwell’s Method for the
AnQ@is of Buckling Data. Timoshenko Sixtieth Anniversary Vol.,
The Macmillan Co., 1938, pp. 27-38.

Donnell.,L. E., and Wan, C. C.: Effect of Imperfections on Bucld_ing
of Thin Cylinders and Columns Under Axial Compression. Jour. Appl.
Mech.. vol. 17. no. 1. Mar. 1950. up. 73-83.



“ma m 3413 31

TABLE I

VALUES OF ROUGHNESS FACTOR K

[

Values we for simple columns but may be used for other
cases as discussed in a~endix B 1

%ax ~.
Standard cold-rolled steel bar stock o.Oool’j 0.00003

Strips cut from standard flat sheets of .00019 .00004
2024-~ and 7075-T6 aluminum alloy

columns of “refineii”construction .00015
(tentative values)

.00003

Columns of ‘~average”construction ● 0o040 .00010
(tentative values)
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